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Introduction

The study of optimal treatment regimes has been gaining
traction recently especially as we enter the era of personal-
ized medicine where medical treatments will be further tai-
lored to the individual. Given a list of possible treatments,
a treatment regime is list of rules defining which treat-
ment should be selecting for which groups of people. For
example, if our treatment was to give someone an antibi-
otic, some groups of people may be cured by the antibiotic,
while others may suffer an allergic reaction if they receive
it or not be impacted at all. A possible treatment regime in
this case would be to assign the antibiotic to everyone under
40 years old and not assign it to everyone else, although this
may not be the best one since age doesn’t necessarily tell
you who will have an allergic reaction. An optimal treat-
ment regime is the treatment regime which gives us the
best possible outcome. In our example, the optimal treat-
ment regime could be the treatment rule that results in the
largest number of people being cured. I will be reviewing
recent literature on finding these optimal treatment regimes
in this paper, with my primary focus being on dynamic
optimal treatment regimes. Dynamic treatment regimes
are treatment regimes where there are multiple time points
where we get to decide treatment. Looking back at our
example, if we got to re-examine patients every week to
decide whether or not we should give them the antibiotic
or not, then this would be a dynamic treatment regime. As
you can see, the dynamic treatment regime generalizes the
idea of the treatment regime that I introduced earlier (aka
the static treatment regime). For simplicity, I will begin
my analysis on optimal treatment regimes with static treat-
ments where there is only a single treatment decision for
each datapoint.

Static Treatment Regimes
Setup

Assume that treatment is binary and is denoted as A, where
A takes on values of 0 or 1, for respectively not receiving
or receiving treatment. X is a vector of subject characteris-
tics that are measured before treatment is assigned. Y is the
observed outcome of interest where we assume larger val-
ues of Y are preferred. The observed data (Y;, A;, X;) is
independent and identically distributed (iid) Vi = 1, ..., n.

A treatment regime is a function g : X — {0, 1} that maps
covariates to a treatment. Y (1) and Y™ (0) are the poten-
tial outcomes that would be observed if a subject received
treatment A = 1 or A = 0, respectively. We assume that
the observed outcome is the potential outcome for the treat-
ment that was actually received, which can be expressed
mathematically as Y = Y*(l)A + Y*(O)(l —A). We also
assume that there are no unmeasured confounders which
can be expressed as {Y(0),Y (1)} A A|X . Therefore,

under a specific treatment regime g, Y (g) = Y™ (Dg(X)+

%

Y (0)(1 = g(X)).

Methods for Optimizing Static Treatment Regimes

A common approach for finding the optimal treatment
regime is to pick the regime that maximizes the overall pop-

ulation mean so that g°P* = argmaxE[Y" (g(X))], where
geqG
G is the set of all treatment regimes. Under the assumptions

that were outlined in the setup section, in this case we can
say that g°P*(X) = I{E[Y|A =1, X] > E[Y|A =0, X]},
where the optimal regime assigns the treatment that yields
the larger mean outcome conditional on the value of X.

In order to identify this optimal decision rule from the
data, Zhang et al. (2012) suggests to use a parametric re-
gression model for E[Y|A, X]. However, Zhang et al.
(2012) notes that only certain components of the paramet-
ric model of E[Y'| A, X] will depend on the treatment. For
example, if we had E[Y|A, X] = 1 X1 + [24X5, then
E[Y|A =1,X] - E[Y|A = 0, X] will only depend on S35
since 31 remains constant when the treatment changes. In
this case we would only need to care about the term involv-
ing (B in our estimate of E[Y'| A, X] in order to distinguish
if a certain treatment had a better expected outcome. Now,
suppose we only parameterize the useful subset of covari-
ates whose impact on the expected outcome changes with
treatment (X, in our example) using coefficients 1. We
can then find an optimal treatment regime that is param-
eterized by 7, denoted as g(X, ), that is within the set of
possible treatment regimes parameterized by n (aka G,)).
Zhang et al. (2012) then proposes a doubly robust estimator
for i which is consistent for E[Y*(gn)} if either 7(X;~)
(the parametric model estimate for the propensity score) or
(A, X; B) (the parametric model estimate for E[Y'| X, A]),
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but not both, is misspecified.

Zhao et al. (2012) takes a different approach where in-
stead of attempting to optimize the potential outcomes, they
try to maximize Eg(x)[Y]. E4[Y] denotes the expectation
with respect to P, which denotes the distribution (X, A,Y")
given that A = ¢g(X). They also have a slightly different
problem setup where A = {—1,1}. Zhao et al. (2012) then

shows that in this caseE, x)[Y] = E[%
m = P(A = 1), and that maximizing Ey(x)[Y] is equiv-
alent to minimizing E[%]. In order to transform
this to a convex optimization function, this loss function is
substituted for the following hinge loss

LS s (1 A (X)) T+ Al where
xt = max(x,0), ||f|| is some norm for f, and g(X) =
sign(f(X)). Support vector machines can then be used
to solve for the optimal linear decision rules as well as
more complex decision rules when using kernels. It is then
proven that if f minimizes this hinge loss function, then the

optimal treatment regime §(X) = sign(f(X)).

], where

Dynamic Treatment Regimes

Murphy (2003) defines a dynamic treatment regime as a
set of decision rules, with one rule for each time period.
ax = (a1, ...,ax) denotes the treatments that occurred at
each time t = 1,2,..., K and Sg = (51, ..., Sk ) denotes
the covariates that occur at each time. The jth decision rule
will use information available from up to time j. The treat-
ment decision made at time j is represented as a;, and the
vector of subject characteristics that are measured before
treatment is assigned at the beginning of time interval by
S;.

Dynamic Treatment Regime Assumptions

According to Schulte et al. (2014), the following assump-
tions are standard when solving for the optimal treatment
regimes:

e The consistency assumption that the covariates and
outcomes observed in the study are those that po-
tentially would be seen under the treatments actu-
ally received. This can be expressed as S) =
S{(Apy) k=2, KandY =Y* (Ag).

e The stable unit treatment value assumption that as-
sumes the covariates and outcome for a datapoint are
unaffected by how treatments are allocated for any
datapoint.

e The no unmeasured confounders assumption out-
lined earlier which can be expressed as A, L
W*|Sk, Ag—1.

Data Sources

According to Schulte et al. (2014), data for dynamic treat-
ment regimes typically comes from observational studies
where participants are randomly sampled from the popu-
lation and treatment assignment takes place according to
routine clinical practice in the population. Data also often
comes from intervention studies where treatments are ran-
domized by those running the experiment. One such ex-
perimental design that has received a fair amount of atten-
tion to gather data for dynamic treatment regimes is the se-
quential multiple-assignment randomized trial (SMART).
In a SMART, a participant receives a random treatment at
each time point where the randomization probabilities for
receiving a treatment a depend on 53 and aj_1. Since this
takes the form of an experiment, the no unmeasured con-
founding assumption holds by design in a SMART, even
though it is unverifiable in an observational study.

Q Learning

Typically, decision rules that maximize the mean response
can be found using dynamic programming where the opti-
mal rules are d7, . .., d}. This is done using the following
algorithm:

Set
JK ('5:'K7@K—1) = sup,, (E [_Y|5’K7&K—17GK])
d}} (SK,ELK_1) = argsup,, (E [Y‘SK,@K_l,CLK]).

Then for each j, calculate

Ji (S, k1) =
sup { E [Ji+1 (Skt1,an) |Sk, Gr—1, ar] }
ak

di (Sk,ax—1) =
argsup { E [Je41 (Skt1,ar) [Sk, ar—1, ax] }

Often, people estimate these expected values using regres-
sions and refer to them as Q-functions. Q-learning, aka
”quality learning”, relies on using regression models on the
outcome for the given relevant covariates at each decision
point.

If we follow the convention of
Qk (Sx,Ax-1,ax) = E [Y|Sk, Ak 1, Ak = ax]

and

Qk (Sk,fikfl,ak) =
E [Jis1 (Ses1, Ak) [Sk, Ae—1, A = ay
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then

sup {QK (SK,AK—laaK)}

AK'PK (QKISK1AK—1)>O

sup {Qk (S, Ak—1,ax)}

akipk(ak|5k71‘ik—1)>0

These Q-functions can be thought of as measuring the
“quality” associated with using treatment aj at decision
k given the history up to that decision and then follow-
ing the optimal regime thereafter. The functions .J can be
thought of as showing the “’value” of a specific datapoint’s
history a;_1, S given that they received the optimal treat-
ments in the future. Using Q-learning, we are able to find
the optimal treatment regimes by directly modeling the Q-
functions. However, if the Q-functions are not correctly
specified then the estimated optimal treatment regime may
not be a consistent estimator of the true optimal treatment
regime.

Murphy (2003) proposes to instead minimize so-called re-
gret functions via dynamic programming instead of directly

the Q-functions. The regret function p (gk, ffk,hak)

can be thought of as the amount that we lose out on for
making a sub-optimal decision aj, rather than the optimal
decision at time k. The regret functions are defined by the
following:

273 (Skagkflaaj) =
Ji (Sky Ak—1) — Qi (Sks Ap—1, ax)

Murphy (2003) proposes to directly model this regret func-
tion using parametric, semiparametric, or nonparametric
techniques (in the paper the author specifically uses para-
metric link functions to express the regret function). Given
these regret functions we can redefine our conditional mean
as follows and iteratively calculate the optimal treatments
with dynamic programming:

E[Y|S‘K7[EK]_ = o + Sy ok (Sk,Apo1) —
Sy ik (Sk, Ak)
where pig = E[Ji(S1)] and g (Sp, ) =

Ty (ﬁk,/fk,l) —Qry (§k,1,ffk,l) fork=1,... K.

This approach is an analogous to another popular approach
for finding the optimal treatment regime known as A-
learning.

A Learning

The main idea of A-learning, aka “advantage learning”,
is to propose alternative functions to the Q-functions like
how in the above example Murphy (2003) estimated re-
gret functions. The most common choice for the estimating
function is the contrast in Q-functions between treatments
with the same history of covariates/treatments. Therefore,
A-learning relies on regression models for the outcomes
from contrasting treatments as well as for the probability
of observed treatment assignment given relevant covariates
at each decision point.

We denote the contrast in Q functions for £k = 1,..., K
as Cy (5, ax—1) = Qk (5k,ar-1,1) — Qi (5%, ax—1,0).
It is useful to note that Qy (5k,ar) may be writ-
ten as Ay (Sk,ar—1) + arCg (Sk,ak—1), where
hy (§k7 C_Lk_l) = Q (Ek, Ak—1, 0) This indicates
that having ap = I{Ck(Sg,ar—1) >0} will max-
imize Qp(Sk,ak-1,ar) where the maximum is
hy (§k7 dkfl) + C <§;€,5Lk,1) I{Ck (§k7dkfl) > 0}.
In A-learning we typically estimate Cy (5;,ar—1) and
hi(Sk,Gk—1) using some parametric or nonparametric
techniques, which then allows us to identify the optimal
treatment regime. After estimating these functions we
can get our optimal treatment for the last time point

cZ% =T {CK (Sk,ar—1) > 0}, and we can find the
optimal treatments from previous timepoints with dynamic
programming.

Schulte et al. (2014) describes A-learning as a middle
ground between () learning and complex methods that em-
ploy flexible models for the Q-functions that are often dif-
ficult to interpret. This is due to the fact that A-learning
allows us flexibly model the functions hy, (5, ax—1) while
maintaining simple parametric models for the contrast
functions C, (5x, ax—1) - Since the treatment rule only de-
pends on the parametric contrast function, the rule will be
interpretable, while the model for the response can be more
complex. Moreover, in A-learning identifying the optimal
regime depends only on correct specification of the con-
trast or regret functions. This means that A-learning meth-
ods are is less sensitive to model misspecification than Q-
learning. Although according to Chakraborty et al. (2010),
Q-learning and A-learning can lead to the same estimators
for the Q-function under certain conditions. One set of con-
ditions is if the propensities scores for treatments are con-
stant and linear models are used for the contrast and qual-
ity functions. When we extend the treatment to have more
than two options at every stage, then A-learning tends to in-
crease in complexity more than Q-learning (Schulte et al.,
2014).
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Optimal ”Midstream” Treatment Regime

In real medical situations it is often the case that a new pa-
tient will be encountered after they have already received
(or not received) some treatments that possibly don’t follow
the optimal regime. Suppose a new patient has already re-
ceived treatments for the first {—1 treatment decision points
where there are K treatment decision points total. How can
we generalize our procedure to find the optimal treatment
regime for a patient where we assign treatments from a
regime starting at £? Zhang et al. (2012) offers the solution.
It is the case that the patient has a history due to the past
treatments that can be viewed as realizations of the random
variables (S§P),A§P)7 . .,S,Efi,Aél_))pSéP)). A,(CP),Ig =
1,...,¢ — 1, represent the treatments that the patient has
already received prior to starting the optimal regime, and
S ]ip), k=1,...,f — 1, denote covariate information col-
lected up to the ¢th decision. In order to get the new opti-
mal treatment regime for this patient, we need to find the
decision rules dgf) (Sk,ak-1), k=1~040+1,... K, that
optimize the response for a patient with a realized past his-
tory of (S'ép),flgl_))l) = (8¢, a0-1) .

Then it is the case that for k = K — 1,...,¢:

Cl;(f)opt (5k,ap-1) =

O - ar - _
argsup E [Vk(fl {8k Sii1 (@n—1,ar) -1, 0k} Vi)
ak

Vk(g) (8k,ap—1) =

supE [Vk(?l {5k Ski1 (@n—1,ak),Gr-1, 0k} Vi)
ag

Therefore, to optimize these functions and find the optimal
treatment regime for a new patient that has a history up to
point ¢, we can use existing methods. It is important to note
that the ¢th to K'th rules of the optimal regime for a patient
with no prior history, d") °"' | are not necessarily the same

as the optimal rules for a new patient with a history up to £,
d(é) opt

Direct Optimization Methods for Variable Selection

In 2015, Zhang & Zhang (2015) first introduced a direct op-
timization approach to attenuate the risk of model misspec-
ification in commonly used DTR methods. Zhang & Zhang
(2016) outlines that Q-learning and A-learning can be clas-
sified as outcome regression-based methods where the aim
is to build good (parametric or semiparametric) regres-
sion models for outcomes given covariates. In these out-
come regression-based approaches, the optimal treatment
regimes are estimated by inverting the relationship between
covariates and the regression models after the models are

specified. It is clear that these methods are highly reliant on
the assumption that the posited regression models are cor-
rectly specified. The method presented in Zhang & Zhang
(2015) on the other hand, aims to directly maximize esti-
mates £ {Y*(d)} across a class of regimes.

They suggest using the (augmented) inverse probability
weighted estimator (AIPWE)

Carpwe (X;) =
=Yi———u(l,X;)- =Y, — — (0, X;
Sy AT -{ 128 - 220 |

since it has the doubly robust property of being consistent
if either treatment or outcome regression models, but not
necessarily both, are correctly specified. Instead of sim-
ply using I{C(X) > 0} as their estimator for the optimal
treatment regime, they then select the treatment regime that
optimizes

d°7(X) = argmin E[|C(X)|{Z # d(X)}]

where Z; = I {C (X;) > 0}. Zhang & Zhang (2016) ad-
vocates that the additional step of optimization after obtain-
ing C(X) is important for prescriptive variable selection
and leads to the direct optimization E {Y*(d)}, which is
claimed to be more robust. From this method, Zhang &
Zhang (2016) also proposes a direct optimization method
for selecting variables that are useful for making treatment
decisions, which I explain below.

Based on the optimization process in Zhang & Zhang
(2015) and assuming a linear decision rule, the weighted
misclassification error rate for a given regime d(X) is

err(X;1, .., Xjm) =

;i [|O(Xz') 1 {Z # I(Bo + B1Xj1 + oo + B Xjm > o)H

Given a set of selected prescriptive variables
{Xj1,..,X;m} and a potential prescriptive variable
X, the difference in misclassification error

eTT(le, ...,ij) — eTT(le, ,XJm,X]>

acts as a natural weighting of importance for the variable
choice X;. The prescriptive variable selection method is
then as follows:

1. Iterate through all the covariates and calculate
err(null set) — err(X;) (where we define
err(null set) as the above error where instead
of selecting optimal betas we just pick the optimal
choice between I(Z; # 0) and I(Z; # 1)) and
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include the k variables with the largest values of
err(null set) — err(X;) in a set F°. Also add the
covariate with the lowest err(X;) to the set S
(denoted as S("™) when having gone through m stages
of the selection process), which will be the set of
important prescriptive variables.

2. Keep adding new covariates to the set S
where the m-th variable you add is X;m =
argminy, ¢ zo/sen-1) err(S~Y, X;).  Continue

(m=1) _ gy (m)

f Eerr
err(m—1)

selecting features until the value o
is below some threshold.

This selection process also holds in the case of dynamic
treatments where you can identify the linear decision rule
that minimizes the weighted misclassification error rate at
each stage. All that must be changed is to convert the loss

functionto 2 37 | [|C’k (Lii) [T {Zﬂ # dk(L,)H where
L, = (Xk,Ak)

Experimentation

I estimated optimal dynamic treatment regimes using the
BOWL estimator from Zhao et al. (2015), the AIWPE es-
timator from Zhang et al. (2012), and standard Q learn-
ing optimal treatment with the DynTxRegime R package.
I applied these methods to a simulated dataset (provided in
the DynTxRegime package) that mimics data from a two-
stage randomized clinical trial studying the effect of meal
replacement shakes on adolescent obesity. I tried to opti-
mize for the negative percentage change of the BMI after
12 months from the original BMI which I will refer to as
the 12 month percent change”. Here are the results from
each method:

BOWL At the first decision time point, I regressed the 4
month percent change on race, gender, parent BMI, and
baseline BMI using a linear kernel for the regime. At the
second decision time point, I regressed the 12 month per-
cent change on race, gender, parent BMI, and BMI after 4
months using a linear kernel for the regime. I used a con-
stant propensity score determined by a bernoulli glm re-
gression. The BOWL method yielded negative coefficients
for parent BMI, a positive coefficient for baseline BMI, and
a negligible coefficient (very close to 0) for BMI after 4
months. The algorithm predicted that the optimal treat-
ment regime would yield a mean decrease in weight over
12 months of 8.238923 percent. At decision point 1 the
algorithm determined that 30.95238 percent of the patients
should have received meal replacements and then 54.7619
percent at decision point 2.

AIPWE At the first decision time point, I regressed 12
month percent change on race, gender, parent BMI, and
baseline BMI for my main effects model and 12 month per-

cent change on race, gender, and baseline BMI for my out-
come contrasts model. I used a constant propensity score
determined by a bernoulli glm regression. At the second
decision time point, I regressed 12 month percent change
on race, gender, parent BMI, and BMI after 4 months for
my main effects model and 12 month percent change on
race, gender, and BMI after 4 months for my outcome con-
trasts model. The AIPWE method yielded negative coef-
ficients for parent BMI, baseline BMI, and BMI after 4
months. This indicates that the higher your BMI measures
are, the harder it is for you to lose a larger proportion of
weight. The algorithm predicted that the optimal treat-
ment regime would yield a mean decrease in weight over
12 months of 9.239559 percent. At decision point 1 the al-
gorithm determined that 0.0 percent of the patients should
have received meal replacements and then 37.14286 per-
cent at decision point 2.

Q-learning I used the same model inputs as the AIPWE to
implement the Q-learning method. Q-learning also yielded
negative coefficients for parent BMI, baseline BMI, and
BMI after 4 months. The algorithm predicted that the op-
timal treatment regime would yield a mean decrease in
weight over 12 months of 7.196043 percent. At decision
point 1 the algorithm determined that 4.285714 percent of
the patients should have received meal replacements and
then 65.7142 percent at decision point 2.

Each of these methods yielded similar predictions on the
optimal decrease in weight over the 12 month study, so we
could expect the best treatment sequence to have patients
lose around 7 to 9.5 percent. The similarity in these re-
sults reassure that the methods are working correctly. How-
ever, there was a large amount of variety in the recom-
mended treatments across the different methods, with the
AIPWE method recommending that no one takes the meal
replacement treatment at decision point 1 and the BOWL
method estimating that around 30.9 percent should take
the meal replacement treatment. This could indicate that
there are many possible treatments combinations that yield
large reductions in patient weight and each method is just
discovering different combinations. It is difficult to say
if the results these methods are accurate or not, since we
do not have access to the responses under treatments we
don’t observe. The negative coefficients that both the Q
learning and AIPWE methods deduced for covariates in-
volving BMI did surprise me, because I thought that those
with a higher BMI would need more food to maintain their
weight. The positive coefficient for baseline BMI deter-
mined by the BOWL method makes more intuitive sense to
me. In addition, it seems logical parent BMI would have
a negative coefficient since patients who have parents with
high BMI values may be genetically predisposed to having
a large weight and would thus have a harder time losing
weight. When I implemented each of these methods, none
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of them specifically stood out. I had to rerun the BOWL
method and the Q-learning method for every treatment de-
cision point, which did not seem to be too efficient. Also,
the AIPWE method seems to be yielding inaccurate results
by claiming that no one in the first stage should take the
treatment.

Conclusion

As you can see from this paper, there are a wide variety of
techniques for computing the optimal treatment regimes.
Most research in this field currently revolves around dy-
namic treatments, likely since dynamic methods are gen-
eralized and could be used to find the optimal static treat-
ments. All the most popular methods for finding the dy-
namic treatment regimes are grounded in reinforcement
learning that rely on dynamic programming. Q-learning,
which is the standard reinforcement learning approach, is
the most general method with most of the research being
published today revolving around different adaptations of
Q-learning. Many researchers who create new approaches
based off Q-learning and A-learning techniques are dub-
bing their methods things such as C-learning (Zhang &
Zhang, 2015) or V-learning (Luckett et al., 2019). It is
apparent that research in the field is transitioning to ap-
proaches that do not rely as heavily on correct model spec-
ification. Techniques like ones outlined in Zhang & Zhang
(2016) are also being adapted to not only learn optimal
treatment regimes but to provide meaningful inference re-
sults.

Since dynamic treatment regimes has roots in reinforce-
ment learning as well as causal inference, researchers with
different backgrounds have been attracted the field. It
seems the machine learning based approaches in Zhao et al.
(2012) and Y.Q. et al. (2015) inspired the doubly robust
estimator (which was more of a causal inference based ap-
proach) used in Zhang & Zhang (2015) and Zhang & Zhang
(2016). There is much more research to come from this
field, and it will be interesting to see how the approaches
from the machine learning community and the causal infer-
ence community evolve and develop off of each other.
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