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What Is Muon Tomography?

Muon tomography is a newly developed, passive imaging technique that utilizes the angle of
scattering of muons through substances to determine elemental composition and density of said
substance. This technique works by measuring the change in trajectory of an incoming muon
due to multiple-Coulomb scattering through materials. The muon's exceptionally high attenuation
length through various material cross sections coupled with ts ability to undergo muliple-Coulomb
scattering makes it an ideal candidate for tomographic imaging of mid- to high-Z materials.

Conventional Designs

Drift Chambers: When the gas within the chamber is ionized, electron-ion
pairs are formed which drift in the direction of the cathode and anode,
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when determining particle positions. However, these dift tubes
are exoeedmgly costly, require high maintenance, and use complex, costly
readout electronics.
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Brief Project Synopsis

We invented a novel, cost efficient technique for conducting muon scattering tomography,
which utiizes silicon photomultiplier arrays (SiPMs) placed by volumetric plastic scintillators
1o trilaterate muon ionization instances. Our method significantly decreases the costs of muon
tomography while maintaining a similar voxel (volumetric pixel) resolution, accuracy, and scan
time. Furthermore, a scaled up rendition of our device is far easier to maintain when compared
o typical designs of muon tomographical devices.

How Our Design Works

When a highly energized muon passes through

a plastic scintillator, it ionizes, causing the plastic
scintillator to transform the particles incidence into

of energy deposited within the sensing block. This is

men sensed by a series of solid-state photomultplying
ensors placed upon the plasiic o transform the
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intensities allow for disparities in voltage in the final
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aterial, wh d in a perpendicular lattice structure, sense particle inputs that may be construed (through trilateration)
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Muon momentum is estimated using a timing system with a Schmitt trigger situated at the
output of each photomuliplier arra

Energy deposition in scintilator is stochastically computed by using a Gaussian fit to the
Landau-Vavilov distribution, and using the mode as a point estimate

Absolute optical intensity: indicates depth of muon trajectory hypocenter into the volume of the
scintilator, perpendicular from planar face of photomultipler array

Takes into account inverse square law of light sphere dispersion, attenuation effects in solid-
state scintillator material, and empirical optical yield of the scintilator (Birks' Law)

Relative optical intensity: discrepancy in Geiger discharge count between vertical and horizontal
pairs of photomultiplier pixels indicates position of muon trajectory hypocenter along both
dimensions of the planar surface where the photomultiplier array is placed

Combining absolute and relative optical intensity measurements from all four scintilating
modules enables the determination of an inbound and outbound trajectory for a singular muon
incidence; multiple-Coulomb scattering angle ascertained

Collusion between separate muon instances avoided due to low ambient flux of cosmic ray
muons and partitioning of the scintillating material (where each parttion has a respective
photomuliplier array)

Initial design [Nov 26 2016 - Dec 5 2016]

Using fibre optics cladded with scintilating material in a lattice structure with photodiodes on each
idual strand would enable for muon scattering tomography to wor

« Significant size constraints for building a functioning prototype with a discernable results due
to low voxel resolution
+ Implausible to construct such a large prototype model with our limited resources and budget

Our inital scintilating fiore
fel for conducting muon
‘scattering tomography

Revised and Finalized design [Dec 7 2016 - Feb 18 2017]

Using silicon photomultiplier (SIPM) arrays by volumetric scintillators to trilaterate particle
instances would enable for muon scattering tomography to work.

« Plausible to build a scaled down prototype model with limited resources and still see
significant results

Mere simple and inovative desgn when compared (o il dosign

Novel idea which has never been tested in this ap
More research was conductod or e reation of i device ince there were o priordesigns!
examples 1o guide us

Trilateration s an accurate way of discerning location of muon instance from disparity in
quadrant signal strengths

SiPM arrays are placed on the sides of scintilator, preventing ts electric field from interfering
with the muon’s scattering

2x2 SIPM arrays allow for more accurate location of muon instance and less expensive than
purchasing three individual SiPM's
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Further modifications [Feb 22 - Present]

Increasing photon detection efficiency with the introduction of parabolic mirrors and lens. First
form of efficient, scaled up version is designe
Parabolic mirror

Light emitted away from the SIPM array will be redirected back to the sensor to enhance the
signal received by the the SIPM's, thus increasing photon detection efficiency

Alows foran ncrease n halon detection ermency due an increase light being captured and
redirected toward respective SIPM pix
Scaled up implementation for finalized (increased PDE) design
+ Large area scintillators with parabolic mirrors and lenses
+ Individual pixels spaced across scintillat

~ Stackablo noxagon casings suround scitlatolparaboli mirror volume 1o allow for
exchangeable layers
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design utiizing volumetric
scintilators.
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